Перевод: с английского на все языки

со всех языков на английский

factory-built building

  • 1 factory-built building

    factory-built building
    nfactory-built [factory-made] building
    сборное здание (из элементов заводского изготовления)

    Англо-русский строительный словарь. — М.: Русский Язык. . 1995.

    Англо-русский словарь строительных терминов > factory-built building

  • 2 factory-built building

    factory-built [factory-made] building
    сборное здание (из элементов заводского изготовления)

    Англо-русский строительный словарь > factory-built building

  • 3 factory-built building

    Универсальный англо-русский словарь > factory-built building

  • 4 factory-made building

    factory-made building
    n
    factory-built building

    Англо-русский строительный словарь. — М.: Русский Язык. . 1995.

    Англо-русский словарь строительных терминов > factory-made building

  • 5 building

    building
    n
    1.   здание; сооружение; постройка; строение; корпус

    2.   строительство; возведение зданий

    building constructed to 12 m grid — здание с сеткой колонн 12*12 м


    building ready for moving-in — здание «под ключ»


    building up of surface layerнанесение поверхностного слоя (напр. бетона при торкретировании)


    - above-grade building
    - above-ground building
    - abutting buildings
    - accessory building
    - administration building
    - agricultural building
    - agricultural production building
    - airport building
    - all-brick building
    - all-metal building
    - ancillary building
    - arch building
    - bank building
    - bearing-wall building
    - beautifully detailed building
    - bedroom building
    - bridge building
    - central-corridor residential building
    - centralized building
    - centrally-planned building
    - cherished building
    - civic building
    - cold-weather building
    - communal building
    - complicated building
    - concrete building
    - concrete-frame building
    - curved building
    - demountable building
    - domestic building
    - earthquake resistance building
    - earth-sheltered building
    - ecclesiastic building
    - educational building
    - energy-efficient building
    - expo building
    - factory building
    - factory-built building
    - farm building
    - fireproof building
    - framed building
    - frame building
    - functional building
    - government building
    - great public building
    - heavy industrial building
    - heightened building
    - high-rise building
    - historic building
    - home building
    - hostel building
    - industrial building
    - industrialized building
    - industrial production building
    - inflatable building
    - integrated building
    - large-panel building
    - light industrial building
    - line building
    - link building
    - loft building
    - low-energy building
    - low rise building
    - main building
    - manufacturing building
    - memorial building
    - mill building
    - minor industrial building
    - module-built building
    - multicompartment building
    - multifamily residential building
    - multipurpose building
    - multistory building
    - multiuse building
    - municipal buildings
    - neighboring buildings
    - nondomestic building
    - nonresidential building
    - office building
    - permanent buildings
    - portal framed building
    - porticoed building
    - post-frame building
    - post-tensioned building
    - precast concrete building
    - precast concrete demountable building
    - precast concrete framed building
    - pre-engineered metal building
    - prefabricated building
    - pressurized building
    - production building
    - public building
    - public service buildings
    - quickly erected building
    - racetrack building
    - railway buildings
    - raised building
    - ramshackle building
    - rectilinear building
    - relocatable building
    - repellent looking building
    - residence building
    - ribbon building
    - riverside building
    - school building
    - science building
    - set-back building
    - single story building
    - site-cast concrete building
    - skeleton building
    - solar building
    - split-level building
    - sports building
    - steel building
    - steel-framed building
    - steel-frame building
    - steel framed multistory buildings
    - storage building
    - stuccoed building
    - subtle building
    - systems building
    - tall block building
    - tapering building
    - temporary buildings
    - terminal building
    - terraced buildings
    - three-dimensional module house building
    - three-dimensional house building
    - three-floored building
    - tier building
    - tower building
    - tropical building
    - turn-key type building
    - typical apartment building
    - unassertive building
    - unit-built building
    - university building
    - unserviceable building
    - ventilation building
    - walk-up building
    - waterside building
    - wing-shaped building
    - winter building

    Англо-русский строительный словарь. — М.: Русский Язык. . 1995.

    Англо-русский словарь строительных терминов > building

  • 6 building

    1) постройка; строение; здание; сооружение; комплекс зданий
    - abutting buildings - accessory building - additional building - administrative building - air-conditioned building - ancillary building - arch building - basic building - bay-type building - bay-type industrial building - bridge building - business building - civic building - cold-weather building - community building - concrete-steel building - control building - convertible building - deckhead building - detached building - detention building - dilapidated building - domestic building - ecclesiastical building - engine building - engineering building - exhibition building - fabricated building - flat building - framed building - frame-panel building - functional building - hall building - hall-type industrial building - heapstead building - high-density apartment building - high-rise apartment building - high-rise building - intelligent building - integrated building - jerry building - line building - low-rise apartment building - market building - medium-rise apartment building - memorial building - mill building - model building - modular building - monastic building - multispan industrial building - multispan complex industrial building - multistorey apartment building - multistoreyed building - multistoreyed garage building - municipal building - office building - one-storey building - pavilion-like building - prefabricated building - prefabricated reusable building - process building - production building - pseudodipteral building - public building - railroad building - residence building - residential building - residential and community building - ribbon building - ruinous building - sectional building - set-back building - single-aisle building - single-storey building - smallholding building - speculative building - speculative building of flats - sporadic building - sport building - sports building - standardized building - station building - steel frame mill building - stone building - storage building - store building - stressed-skin building - system building - temporal building - temporary building - tenement building - theatre building - tier building - timber building - tower building - towerlike building - two-aisle building - tyre building - universal building - walk-up building - water-conditioning building
    * * *
    1.   здание; сооружение; постройка; строение; корпус
    2.   строительство; возведение зданий

    building constructed to 12 m grid — здание с сеткой колонн 12*12 м

    building ready for moving-in — здание «под ключ»

    building up of surface layerнанесение поверхностного слоя (напр. бетона при торкретировании)

    - above-grade building
    - above-ground building
    - abutting buildings
    - accessory building
    - administration building
    - agricultural building
    - agricultural production building
    - airport building
    - all-brick building
    - all-metal building
    - ancillary building
    - arch building
    - bank building
    - bearing-wall building
    - beautifully detailed building
    - bedroom building
    - bridge building
    - central-corridor residential building
    - centralized building
    - centrally-planned building
    - cherished building
    - civic building
    - cold-weather building
    - communal building
    - complicated building
    - concrete building
    - concrete-frame building
    - curved building
    - demountable building
    - domestic building
    - earthquake resistance building
    - earth-sheltered building
    - ecclesiastic building
    - educational building
    - energy-efficient building
    - expo building
    - factory building
    - factory-built building
    - farm building
    - fireproof building
    - framed building
    - frame building
    - functional building
    - government building
    - great public building
    - heavy industrial building
    - heightened building
    - high-rise building
    - historic building
    - home building
    - hostel building
    - industrial building
    - industrialized building
    - industrial production building
    - inflatable building
    - integrated building
    - large-panel building
    - light industrial building
    - line building
    - link building
    - loft building
    - low-energy building
    - low rise building
    - main building
    - manufacturing building
    - memorial building
    - mill building
    - minor industrial building
    - module-built building
    - multicompartment building
    - multifamily residential building
    - multipurpose building
    - multistory building
    - multiuse building
    - municipal buildings
    - neighboring buildings
    - nondomestic building
    - nonresidential building
    - office building
    - permanent buildings
    - portal framed building
    - porticoed building
    - post-frame building
    - post-tensioned building
    - precast concrete building
    - precast concrete demountable building
    - precast concrete framed building
    - pre-engineered metal building
    - prefabricated building
    - pressurized building
    - production building
    - public building
    - public service buildings
    - quickly erected building
    - racetrack building
    - railway buildings
    - raised building
    - ramshackle building
    - rectilinear building
    - relocatable building
    - repellent looking building
    - residence building
    - ribbon building
    - riverside building
    - school building
    - science building
    - set-back building
    - single story building
    - site-cast concrete building
    - skeleton building
    - solar building
    - split-level building
    - sports building
    - steel building
    - steel-framed building
    - steel-frame building
    - steel framed multistory buildings
    - storage building
    - stuccoed building
    - subtle building
    - systems building
    - tall block building
    - tapering building
    - temporary buildings
    - terminal building
    - terraced buildings
    - three-dimensional module house building
    - three-dimensional house building
    - three-floored building
    - tier building
    - tower building
    - tropical building
    - turn-key type building
    - typical apartment building
    - unassertive building
    - unit-built building
    - university building
    - unserviceable building
    - ventilation building
    - walk-up building
    - waterside building
    - wing-shaped building
    - winter building

    Англо-русский строительный словарь > building

  • 7 Allen, John F.

    [br]
    b. 1829 England
    d. 2 October 1900 New York (?), USA
    [br]
    English inventor of the Allen valve used on his pioneering high-speed engines.
    [br]
    Allen was taken to the United States from England when he was 12 years old. He became an engineer on the Curlew, a freight boat running between New York and Providence. A defect which caused the engine to race in rough weather led Allen to invent a new valve gear, but he found it could not be fitted to the Corliss engine. In 1856 he patented an improved form of valve and operating gear to reduce back-pressure in the cylinder, which was in fact the reverse of what happened in his later engines. In 1860 he repaired the engines of a New York felt-hat manufacturer, Henry Burr, and that winter he was introduced to Charles Porter. Porter realized the potential of Allen's valves for his idea of a high-speed engine, and the Porter-Allen engine became the pioneer of high-speed designs.
    Porter persuaded Allen to patent his new valves and two patents were obtained in 1862. These valves could be driven positively and yet the travel of the inlet could be varied to give the maximum expansion at different cut-offs. Also, the valves allowed an exceptionally good flow of steam. While Porter went to England and tried to interest manufacturers there, Allen remained in America and continued work on the engine. Within a few years he invented an inclined watertube boiler, but he seemed incapable of furthering his inventions once they had been placed on the market. Although he mortgaged his own house in order to help finance the factory for building the steam engine, in the early 1870s he left Porter and built a workshop of his own at Mott Haven. There he invented important systems for riveting by pneumatic machines through both percussion and pressure which led into the production of air compressors and riveting machines.
    [br]
    Further Reading
    Obituaries appeared in engineering journals at the time of his death.
    Dictionary of American Biography, 1928, Vol. I, New York: C.Scribner's Sons. C.T.Porter, 1908, Engineering Reminiscences, New York: J.Wiley \& Sons, reprint 1985, Bradley, Ill.: Lindsay Publications (provides details of Allen's valve design).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (covers the development of the Porter-Allen engine).
    RLH

    Biographical history of technology > Allen, John F.

  • 8 Voisin, Gabriel

    SUBJECT AREA: Aerospace
    [br]
    b. 5 February 1880 Belleville-sur-Saône, France
    d. 25 December 1973 Ozenay, France
    [br]
    French manufacturer of aeroplanes in the early years of aviation.
    [br]
    Gabriel Voisin was one of a group of aviation pioneers working in France c. 1905. One of the leaders of this group was a rich lawyer-sportsman, Ernest Archdeacon. For a number of years they had been building gliders based on those of the Wright brothers. Archdeacon's glider of 1904 was flown by Voisin, who went on to assist in the design and manufacture of gliders for Archdeacon and Louis Blériot, including successful float-gliders. Gabriel Voisin was joined by his brother Charles in 1905 and they set up the first commercial aircraft factory. As the Voisins had limited funds, they had to seek customers who could afford to indulge in the fashionable hobby of flying. One was Santos- Dumont, who commissioned Voisin to build his "14 bis" aeroplane in 1906.
    Early in 1907 the Voisins built their first powered aeroplane, but it was not a success.
    Later that year they completed a biplane for a Paris sculptor, Léon Delagrange, and another for Henri Farman. The basic Voisin was a biplane with the engine behind the pilot and a "pusher" propeller. Pitching was controlled by biplane elevators forward of the pilot and rudders were fitted to the box kite tail, but there was no control of roll.
    Improvements were gradually introduced by the Voisins and their customers, such as Farman. Incidentally, to flatter their clients the Voisins often named the aircraft after them, thus causing some confusion to historians. Many Voisins were built up until 1910, when the company's fortunes sank. Competition was growing, the factory was flooded, and Charles left. Gabriel started again, building robust biplanes of steel construction. Voisin bombers were widely used during the First World War, and a subsidiary factory was built in Russia.
    In August 1917, Voisin sold his business when the French Air Ministry decided that Voisin aeroplanes were obsolete and that the factory should be turned over to the building of engines. After the war he started another business making prefabricated houses, and then turned to manufacturing motor cars. From 1919 to 1939 his company produced various models, mainly for the luxury end of the market but also including a few sports and racing cars. In the early 1950s he designed a small two-seater, which was built by the Biscuter company in Spain. The Voisin company finally closed in 1958.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'honneur 1909. Académie des Sciences Gold Medal 1909.
    Bibliography
    1961, Mes dix milles cerfs-volants, France; repub. 1963 as Men, Women and 10,000 Kites, London (autobiography; an eminent reviewer said, "it contains so many demonstrable absurdities, untruths and misleading statements, that one does not know how much of the rest one can believe").
    1962, Mes Mille et un voitures, France (covers his cars).
    Further Reading
    C.H.Gibbs-Smith, 1965, The Invention of the Aeroplane 1799–1909, London (includes an account of Voisin's contribution to aviation and a list of his early aircraft).
    Jane's Fighting Aircraft of World War I, London; reprinted 1990 (provides details of Voisin's 1914–18 aircraft).
    E.Chadeau, 1987, L'Industrie aéronautique en France 1900–1950, de Blériot à Dassault, Paris.
    G.N.Georgano, 1968, Encyclopedia of Motor Cars 1885 to the Present, New York (includes brief descriptions of Voisin's cars).
    JDS

    Biographical history of technology > Voisin, Gabriel

  • 9 build

    I [bɪld] II 1. [bɪld]
    verbo transitivo (pass., p.pass. built)
    1) (construct) costruire [factory, church, railway]; erigere [ monument]
    2) (assemble) costruire, assemblare [engine, ship]
    3) inform. sviluppare [ software]; creare [ interface]
    4) (establish) costruire [career, future]; instaurare [ relationship]; fondare, costruire [ empire]; favorire [ prosperity]; costituire, formare [ team]

    to build one's hopes on sth. — riporre le proprie speranze in qcs

    5) costruire [sequence, set, word] (anche gioc.)
    2.
    verbo intransitivo (pass., p.pass. built)
    1) (construct) costruire

    to build onbasarsi o fondarsi su [popularity, success]

    * * *
    [bild] 1. past tense, past participle - built; verb
    (to form or construct from parts: build a house/railway/bookcase.) costruire
    2. noun
    (physical form: a man of heavy build.) forma; corporatura
    - building
    - building society
    - built-in
    - built-up
    - build up
    * * *
    build /bɪld/
    n. [cu]
    1 ( di persona) corporatura; fisico: sturdy build, corporatura robusta; powerful build, fisico possente; solid build, corporatura forte (o massiccia); athletic build, fisico atletico; slender build, corporatura esile
    2 (spec. di veicolo) struttura; linea.
    ♦ (to) build /bɪld/
    (pass. e p. p. built)
    A v. t.
    1 costruire; edificare; erigere: to build new schools, costruire nuove scuole; to build a road, costruire (o fare) una strada; to build a ship, costruire una nave; to build a wall, costruire (o erigere) un muro; A swallow has built its nest under my roof, una rondine ha fatto il nido sotto il mio tetto
    2 (mecc.) fabbricare; assemblare: to build a car, fabbricare un'automobile
    3 creare; costruire; formare; sviluppare: to build a business, creare un'azienda; metter su un'impresa; to build confidence, creare fiducia; to build a relationship, sviluppare una relazione; to build an army, creare un esercito
    4 ► to build up, A def. 3
    5 (comput.) compilare ( un programma); creare (un database, ecc.)
    6 to build on (o upon) basare su; fondare su: to build a theory on facts, basare una teoria sui fatti; to build all one's hopes on st., fondare o (riporre) ogni speranza in qc.
    7 to build on (o upon), fare affidamento, contare su (qc.)
    B v. i.
    1 costruire: They are building in this district, costruiscono in questo quartiere
    3 ► to build up, B def. 2
    4 to build on (o upon), basarsi su; far tesoro di ( conoscenze, esperienza, ecc.)
    ● (fig.) to build bridgesbridge (1) □ (fig.) to build on sand, costruire sulla sabbia.
    * * *
    I [bɪld] II 1. [bɪld]
    verbo transitivo (pass., p.pass. built)
    1) (construct) costruire [factory, church, railway]; erigere [ monument]
    2) (assemble) costruire, assemblare [engine, ship]
    3) inform. sviluppare [ software]; creare [ interface]
    4) (establish) costruire [career, future]; instaurare [ relationship]; fondare, costruire [ empire]; favorire [ prosperity]; costituire, formare [ team]

    to build one's hopes on sth. — riporre le proprie speranze in qcs

    5) costruire [sequence, set, word] (anche gioc.)
    2.
    verbo intransitivo (pass., p.pass. built)
    1) (construct) costruire

    to build onbasarsi o fondarsi su [popularity, success]

    English-Italian dictionary > build

  • 10 modular data center

    1. модульный центр обработки данных (ЦОД)

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > modular data center

  • 11 site

    1. noun
    1) (land) Grundstück, das
    2) (location) Sitz, der; (of new factory etc.) Standort, der
    2. transitive verb
    (locate) stationieren [Raketen]

    site a factory in LondonLondon als Standort einer Fabrik wählen

    * * *
    1) (a place where a building, town etc is, was, or is to be, built: He's got a job on a building-site; The site for the new factory has not been decided.) der Platz
    2) ((also Web site) a site on the Internet that gives information about a particular subject or person.)
    * * *
    [saɪt]
    I. n
    1. (place) Stelle f, Platz m, Ort m; of crime Tatort m
    \site of a battle Kampfplatz m
    2. (plot) Grundstück nt
    archaeological \site archäologische Fundstätte
    building \site Baugelände nt
    caravan [or AM camping] \site Campingplatz m
    greenfield \site Baugelände nt auf der grünen Wiese
    industrial \site Industriegelände nt
    vacant \site unbebautes Grundstück
    3. (building location) Baustelle f
    on \site vor Ort
    no unauthorized persons are allowed on the \site Unbefugten ist das Betreten der Baustelle verboten
    4. (on the internet)
    [web] \site Website f
    fan \site Fanpage f
    II. vt
    to \site sth einen Standort für etw akk bestimmen
    we \sited our tent under a tree wir schlugen unser Zelt unter einem Baum auf
    to be \sited out of town außerhalb der Stadt liegen
    to be badly \sited ungünstig gelegen sein
    * * *
    [saɪt]
    1. n
    1) Stelle f, Platz m; (MED, of infection) Stelle f
    2) (ARCHEOL) Stätte f
    3) (= building site) (Bau)gelände nt, Baustelle f

    site office (Büro nt der) Bauleitung f

    4) (= camping site) Campingplatz m
    5)
    See:
    = website
    2. vt
    legen, anlegen

    to be sited —

    * * *
    site [saıt]
    A s
    1. Lage f (einer Baulichkeit, Stadt etc):
    site plan Lageplan m
    2. Stelle f, Örtlichkeit f:
    site assembly TECH Montagebauverfahren n;
    a) an Ort und Stelle, vor Ort liefern etc,
    b) auf der Baustelle
    3. Stelle f, Stätte f, Schauplatz m (eines Vorgangs):
    the site of the crash FLUG die Absturzstelle;
    the site of the excavations die Ausgrabungsstätte;
    the site of the fracture MED die Bruchstelle
    4. Bauplatz m, -gelände n, Grundstück n
    5. Sitz m (einer Industrie)
    6. WIRTSCH (Ausstellungs) Gelände n
    B v/t platzieren, legen, aufstellen, an-, unterbringen, einer Sache einen Platz geben, MIL Raketen etc stationieren, ein Geschütz etc in Stellung bringen:
    well-sited schön gelegen, in schöner Lage (Haus)
    * * *
    1. noun
    1) (land) Grundstück, das
    2) (location) Sitz, der; (of new factory etc.) Standort, der
    2. transitive verb
    (locate) stationieren [Raketen]
    * * *
    n.
    Aufstellungsort m.
    Baugrundstück n.
    Lage -n f.
    Landschaft f.
    Stätte -n f.

    English-german dictionary > site

  • 12 site

    1) (a place where a building, town etc is, was, or is to be, built: He's got a job on a building-site; The site for the new factory has not been decided.) sitio, lugar
    2) ((also Web site) a site on the Internet that gives information about a particular subject or person.) site
    site n
    1. solar
    2. obra
    3. emplazamiento
    4. lugar
    tr[saɪt]
    1 (location) situación nombre femenino, emplazamiento, colocación nombre femenino
    2 (area, land) terreno, lugar nombre masculino, solar nombre masculino
    1 situar, ubicar, emplazar
    \
    SMALLIDIOMATIC EXPRESSION/SMALL
    on site en el recinto
    archeological site yacimiento arqueológico
    site ['saɪt] n
    1) place: sitio m, lugar m
    2) location: emplazamiento m, ubicación f
    n.
    asiento s.m.
    emplazamiento s.m.
    local s.m.
    lugar s.m.
    sitio s.m.
    situación s.f.
    solar s.m.
    saɪt
    a) ( location) emplazamiento m (frml); ( piece of land) terreno m, solar m
    b) ( building site) obra f
    c) ( archeological site) yacimiento m (arqueológico)
    d) ( campsite) camping m
    [saɪt]
    1. N
    1) (=place) sitio m, lugar m ; (=location) situación f ; (=scene) escenario m ; (for building) solar m, terreno m ; (archaeological) yacimiento m
    2) (Internet) = website
    2.
    VT situar, ubicar (esp LAm)
    * * *
    [saɪt]
    a) ( location) emplazamiento m (frml); ( piece of land) terreno m, solar m
    b) ( building site) obra f
    c) ( archeological site) yacimiento m (arqueológico)
    d) ( campsite) camping m

    English-spanish dictionary > site

  • 13 Lever, William Hesketh

    [br]
    b. 19 September 1851 Bolton, Lancashire, England
    d. 7 May 1925 Hampstead, London, England
    [br]
    English manufacturer of soap.
    [br]
    William Hesketh Lever was the son of the retail grocer James Lever, who built up the large wholesale firm of Lever \& Co. in the north-west of England. William entered the firm at the age of 19 as a commercial traveller, and in the course of his work studied the techniques of manufacture and the quality of commercial soaps available at the time. He decided that he would concentrate on the production of a soap that was not evil-smelling, would lather easily and be attractively packaged. In 1884 he produced Sunlight Soap, which became the trade mark for Lever \& Co. He had each tablet wrapped, partly to protect the soap from oxygenization and thus prevent it from becoming rancid, and partly to display his brand name as a form of advertising. In 1885 he raised a large capital sum, purchased the Soap Factory in Warrington of Winser \& Co., and began manufacture. His product contained oils from copra, palm and cotton blended with tallow and resin, and its quality was carefully monitored during production. In a short time it was in great demand and began to replace the previously available alternatives of home-made soap and poor-quality, unpleasant-smelling bars.
    It soon became necessary to expand the firm's premises, and in 1887 Lever purchased fifty-six acres of land upon which he set up a new centre of manufacture. This was in the Wirral in Cheshire, near the banks of the River Mersey. Production at the new factory, which was called Port Sunlight, began in January 1889. Lever introduced a number of technical improvements in the production process, including the heating systems and the recovery of glycerine (which could later be sold) from the boiling process.
    Like Sir Titus Salt of Saltaire before him, Lever believed it to be in the interest of the firm to house his workers in a high standard of building and comfort close to the factory.
    By the early twentieth century he had created Port Sunlight Village, one of the earliest and certainly the most impressive housing estates, for his employees. Architecturally the estate is highly successful, being built from a variety of natural materials and vernacular styles by a number of distinguished architects, so preventing an overall architectural monotony. The comprehensive estate comprises, in addition to the factory and houses, a church, an art gallery, schools, a cottage hospital, library, bank, fire station, post office and shops, as well as an inn and working men's institute, both of which were later additions. In 1894 Lever \& Co. went public and soon was amalgamated with other soap firms. It was at its most successful high point by 1910.
    [br]
    Principal Honours and Distinctions
    First Viscount Leverhulme of the Western Isles.
    Further Reading
    1985, Dictionary of Business Biography. Butterworth.
    Ian Campbell Bradley, 1987, Enlightened Entrepreneurs, London: Weidenfeld \& Nicolson.
    DY

    Biographical history of technology > Lever, William Hesketh

  • 14 site

    1) (a place where a building, town etc is, was, or is to be, built: He's got a job on a building-site; The site for the new factory has not been decided.) plads; -plads; sted
    2) ((also Web site) a site on the Internet that gives information about a particular subject or person.) website; websted
    * * *
    1) (a place where a building, town etc is, was, or is to be, built: He's got a job on a building-site; The site for the new factory has not been decided.) plads; -plads; sted
    2) ((also Web site) a site on the Internet that gives information about a particular subject or person.) website; websted

    English-Danish dictionary > site

  • 15 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 16 Lawrence, Richard Smith

    SUBJECT AREA: Weapons and armour
    [br]
    b. 22 November 1817 Chester, Vermont, USA
    d. 10 March 1892 Hartford, Connecticut, USA
    [br]
    American gunsmith and inventor.
    [br]
    Richard S.Lawrence received only an elementary education and as a young man worked on local farms and later in a woodworking shop. His work there included making carpenters' and joiners' tools and he spent some of his spare time in a local gunsmith's shop. After a brief period of service in the Army, he obtained employment in 1838 with N.Kendall \& Co. of Windsor, Vermont, making guns at the Windsor prison. Within six months he was put in charge of the work, continuing in this position until 1842 when the gun-making ceased; he remained at the prison for a time in charge of the carriage shop. In 1843 he opened a gun shop in Windsor in partnership with Kendall, and the next year S.E. Robbins, a businessman, helped them obtain a contract from the Federal Government for 10,000 rifles. A new company, Robbins, Kendall \& Lawrence, was formed and a factory was built at Windsor. Three years later Kendall's share of the business was purchased by his partners and the firm became Robbins \& Lawrence. Lawrence supervised the design and production and, to improve methods of manufacture, developed new machine tools with the aid of F.W. Howe. In 1850 Lawrence introduced the lubrication of bullets, which practice ensured the success of the breech-loading rifle. Also in 1850, the company undertook to manufacture railway cars, but this involved them in a considerable financial loss. The company took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. In 1852 the company contracted to manufacture Sharps rifles and carbines at a new factory to be built at Hartford, Connecticut. Lawrence moved to Hartford in 1853 to superintend the building and equipment of the plant. Shortly afterwards, however, a promised order for a large number of rifles failed to materialize and, following its earlier financial difficulties, Robbins \& Lawrence was forced into bankruptcy. The Hartford plant was acquired by the Sharps Rifle Company in 1856 and Lawrence remained there as Superintendent until 1872. From then he was for many years Superintendent of Streets in the city of Hartford and he also served on the Water Board, the Board of Aldermen and as Chairman of the Fire Board.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York; and 1987, Bradley, Ill. (provides biographical information and includes in an Appendix (pp. 281–94) autobiographical notes written by Richard S.Lawrence in 1890).
    Merritt Roe Smith, 1974, "The American Precision Museum", Technology and Culture 15 (3): 413–37 (for information on Robbins \& Lawrence and products).
    RTS

    Biographical history of technology > Lawrence, Richard Smith

  • 17 Stephenson, John

    [br]
    b. 4 July 1809 County Armagh, Ireland,
    d. 31 July 1893 New Rochelle, New York, USA.
    [br]
    Irish/American pioneer of tramways for urban transport, builder and innovator of streetcars.
    [br]
    Stephenson's parents emigrated to the United States when he was 2 years old; he was educated in public schools in New York, where his parents had settled, and at a Wesleyan seminary. He became a clerk in a store at 16, but in 1828 he apprenticed himself to a coachbuilder, Andrew Wade, of Broome Street, New York. His apprenticeship lasted two years, during which time he learned mechanical drawing in the evenings and started to design vehicles. He was employed for a year on carriage repair work and in 1831 he opened his own coach repair business. Within a year he had built New York's first omnibus; this was bought by Abraham Brower, Stephenson's former employer, who started the city's first bus service. Brower immediately ordered a further three buses from Stephenson, and a further horse-drawn car was ordered by the New York \& Harlem Railroad. He built the car used at the opening of the railroad on 26 November 1832, the first street railway in the world. Orders followed for cars for many street railroads in other cities in the eastern States, and business prospered until the financial panic of 1837. Stephenson's factory was forced to close but he managed to pay off his creditors in the next six years and started in business again, building only omnibuses and coaches to become recognized as the world's foremost builder of streetcars. His first car had four flanged wheels, and a body of three compartments slung on leather straps from an unsprung chassis. He built horse-drawn cars, cable cars, electric and open cars; by 1891 his factory had 500 employees and was producing some twenty-five cars a week. His first patent had been dated 23 April 1833 and was followed by some ten others. During the Civil War, his factory was turned over to the manufacture of pontoons and gun carriages. He married Julia Tiemann in 1833; they had two sons and a daughter. He lived at New Rochelle, New York, from 1865 until his death.
    [br]
    Further Reading
    "The original car builder", 1891, New York Tribune, 10 September.
    D.Malone (ed.), Dictionary of American Biography, Vol. 9, New York: Charles Scribner.
    IMcN

    Biographical history of technology > Stephenson, John

  • 18 site

    [saɪt] 1. n
    miejsce nt; (also: building site) plac m budowy; ( COMPUT) witryna f internetowa
    2. vt
    factory lokalizować (zlokalizować perf); missiles rozmieszczać (rozmieścić perf)
    * * *
    1) (a place where a building, town etc is, was, or is to be, built: He's got a job on a building-site; The site for the new factory has not been decided.) teren, plac
    2) ((also Web site) a site on the Internet that gives information about a particular subject or person.) strona internetowa

    English-Polish dictionary > site

  • 19 Gropius, Walter Adolf

    [br]
    b. 18 May 1883 Berlin, Germany
    d. 5 July 1969 Boston, USA
    [br]
    German co-founder of the modern movement of architecture.
    [br]
    A year after he began practice as an architect, Gropius was responsible for the pace-setting Fagus shoe-last factory at Alfeld-an-der-Leine in Germany, one of the few of his buildings to survive the Second World War. Today the building does not appear unusual, but in 1911 it was a revolutionary prototype, heralding the glass curtain walled method of non-load-bearing cladding that later became ubiquitous. Made from glass, steel and reinforced concrete, this factory initiated a new concept, that of the International school of modern architecture.
    In 1919 Gropius was appointed to head the new School of Art and Design at Weimar, the Staatliches Bauhaus. The school had been formed by an amalgamation of the Grand Ducal schools of fine and applied arts founded in 1906. Here Gropius put into practice his strongly held views and he was so successful that this small college, which trained only a few hundred students in the limited years of its existence, became world famous, attracting artists, architects and students of quality from all over Europe.
    Gropius's idea was to set up an institution where students of all the arts and crafts could work together and learn from one another. He abhorred the artificial barriers that had come to exist between artists and craftsmen and saw them all as interdependent. He felt that manual dexterity was as essential as creative design. Every Bauhaus student, whatever the individual's field of work or talent, took the same original workshop training. When qualified they were able to understand and supervise all the aesthetic and constructional processes that made up the scope of their work.
    In 1924, because of political changes, the Weimar Bauhaus was closed, but Gropius was invited to go to Dessau to re-establish it in a new purpose-built school which he designed. This group of buildings became a prototype that designers of the new architectural form emulated. Gropius left the Bauhaus in 1928, only a few years before it was finally closed due to the growth of National Socialism. He moved to England in 1934, but because of a lack of architectural opportunities and encouragement he continued on his way to the USA, where he headed the Department of Architecture at Harvard University's Graduate School of Design from 1937 to 1952. After his retirement from there Gropius formed the Architect's Collaborative and, working with other architects such as Marcel Breuer and Pietro Belluschi, designed a number of buildings (for example, the US Embassy in Athens (1960) and the Pan Am Building in New York (1963)).
    [br]
    Bibliography
    1984, Scope of Total Architecture, Allen \& Unwin.
    Further Reading
    N.Pevsner, 1936, Pioneers of the Modern Movement: From William Morris to Walter Gropius, Penguin.
    C.Jenck, 1973, Modern Movements in Architecture, Penguin.
    H.Probst and C.Shädlich, 1988, Walter Gropius, Berlin: Ernst \& Son.
    DY

    Biographical history of technology > Gropius, Walter Adolf

  • 20 site

    I [saɪt]
    2) (of building, town) sito m.; archeol. sito m. (archeologico)
    3) (of recent event, accident) luogo m.
    4) (on the Web) sito m.
    II [saɪt]
    * * *
    1) (a place where a building, town etc is, was, or is to be, built: He's got a job on a building-site; The site for the new factory has not been decided.) area, posto
    2) ((also Web site) a site on the Internet that gives information about a particular subject or person.) sito
    * * *
    I [saɪt]
    2) (of building, town) sito m.; archeol. sito m. (archeologico)
    3) (of recent event, accident) luogo m.
    4) (on the Web) sito m.
    II [saɪt]

    English-Italian dictionary > site

См. также в других словарях:

  • building construction — Techniques and industry involved in the assembly and erection of structures. Early humans built primarily for shelter, using simple methods. Building materials came from the land, and fabrication was dictated by the limits of the materials and… …   Universalium

  • building — [bil′diŋ] n. 1. anything that is built with walls and a roof, as a house or factory; structure 2. the act, process, work, or business of constructing houses, ships, etc. SYN. BUILDING is the general term applied to a fixed structure in which… …   English World dictionary

  • building site — building .site n a place where a house, factory etc is being built …   Dictionary of contemporary English

  • Factory — This article is about manufacturing plants and different kinds of factories. For other uses, see Factory (disambiguation). Volkswagen factory in Wolfsburg, Germany A factory (previously manufactory) or manufacturing plant is an industrial… …   Wikipedia

  • Factory farming — A commercial chicken house raising broiler pullets for meat …   Wikipedia

  • building — I (New American Roget s College Thesaurus) Architectural structure Nouns 1. edifice, structure, construction. See form, production, architecture. 2. house, home, abode. 3. (types of buildings) A frame, prefab, Quonset hut, ranch house, saltbox,… …   English dictionary for students

  • Building insulation materials — A selection of insulation materials can aid in building insulation. All of these are based on standard principles of thermal insulation. Materials used to reduce heat transfer by conduction, radiation or convection are employed in varying… …   Wikipedia

  • building site — noun (C) a place where a house, factory etc is being built …   Longman dictionary of contemporary English

  • Hoover Building — The Hoover Building on the Western Avenue (A40) in Perivale, Middlesex is an example of Art Deco architecture, designed by Wallis, Gilbert and Partners. It is celebrated in the song Hoover Factory by Elvis Costello.HistoryBuilt for The Hoover… …   Wikipedia

  • Malyshev Factory — Malyshev Plant Type state owned company Industry arms industry, machine building Founded 1895 …   Wikipedia

  • Ford Motor Company Lamp Factory — The Flat Rock Ford Motor Co. Lamp Factory was the product of a unique collaboration betweenindustrial genius Henry Ford and his lead designer, Albert Kahn.Ford systematically acquired land, an existing dam, and water rights in the area where the… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»